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REMOVAL OF A-SCAN STREAKING
ARTIFACT

RELATED APPLICATION

The present application claims the benefit of and priority to
U.S. Provisional No. 61/710,415, filed Oct. 5, 2012, which is
incorporated by reference in its entirety.

TECHNICAL FIELD

This invention generally relates to systems and methods for
reducing streaking artifacts and periodic noise in medical
imaging.

BACKGROUND

Tomographic imaging is a signal acquisition and process-
ing technology that allows for high-resolution cross-sectional
imaging in biological systems. Tomographic imaging sys-
tems include, for example, optical coherence tomography
systems, ultrasound imaging systems, and computed tomog-
raphy. Tomographic imaging is particularly well-suited for
imaging the subsurface of a vessel or lumen within the body,
such as a blood vessel, using probes disposed within a cath-
eter through a minimally invasive procedure.

Typical tomographic imaging catheters consist of an imag-
ing core that rotates and moves longitudinally through a blood
vessel, while recording an image video loop of the vessel. The
motion results in a 3D dataset, where each frame provides a
360 degree slice of the vessel at different longitudinal section.
Each frame, or image, consists of a set of A-lines, which are
depth profiles produced by the reflected energy as a function
of time.

These frames provide cardiologists with invaluable infor-
mation such as the location and severity of the stenosis in a
patient, the presence of vulnerable plagues, mal-apposed
stents, and changes in the disease over time. The information
also assists in determining the appropriate treatment plan for
the patient, such as drug therapy, stent placement, angio-
plasty, or bypass surgery. Because a physician is relying on
the quality of the image for diagnosis and course of treatment,
image quality is critical.

A drawback of tomographic imaging and other signal
acquisition imaging technologies is the presence of noise that
disrupts the signal and reduces image quality. Noise cause by
attenuating objects, such as metal stents, degrades image
quality and results in high amplitude signals that appear as an
actual streak within the obtained images. The resulting streak
is often called a streaking artifact. In addition, periodic noise,
such as noise caused by changes in polarization, can also
degrade image quality. The reduced image quality caused by
both streaking artifacts and periodic noise impedes a physi-
cian’s ability to accurately interpret the medical image.

Typically, noise is reduced in medical images using filter-
ing and averaging techniques. Filtering techniques include
applying digital filters, such as mean and median, wavelet,
anisotropic and bi-lateral filters, uniformly across A-scans.
Typical averaging techniques treat noise as a uniform back-
ground disruption across an imaging data set and average the
noise across A-scans. Although filters and uniform signal
averaging successfully remove some noise, such techniques
are inefficient at removing streaking artifacts and periodic
noise.

Current techniques aimed at removing streaking artifacts
are complicated and inefficient due to multiple complicated
processing techniques. One technique to remove streaking
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artifacts utilizes nearest-neighbor pattern recognition. Using
nearest neighbor pattern recognition, A-scans that intersect
an attenuating object responsible for the streaking are
detected. After the A-scans are detected, the A-scans are
removed from the data set and the streaking artifact is
replaced with interpolated data. Another technique requires
obtaining repeated B-scans of a target location, registering
and aligning the obtained B-scans, and averaging the A-scans
across the B-scans using a weighted average. This technique
is only successtul in removing streaking artifacts ifthe attenu-
ating object does not produce a streaking artifact uniformly
across the B-scans.

SUMMARY

Systems and methods of the invention provide for a fastand
simple processing technique for reducing noise, such as
streaking artifacts, in tomographic images. Unlike other aver-
aging techniques that estimate noise across A-scans, noise is
treated as a gain that is specific and unique to each A-scan. By
treating noise as a gain that is specific and unique to each
A-scan and independent from other A-scans in an imaging
data set, an algorithm estimates and scales the noise within
each individual A-scan. The combination of the individually
scaled A-scans results in 2-D and 3-D images without streak-
ing artifacts and periodic noise. This advantageously and
efficiently overcomes the reduced image quality associated
with streaking artifacts without the need for repeated imaging
of a target location and multiple, complicated processing
techniques. Moreover, the simple noise reduction technique
improves the ability for a physician to accurately interpret a
medical image.

Tomographic imaging systems suitable for use in the
invention include, for example, ultrasound imaging systems,
optical coherence tomography systems, and combined OCT-
ultrasound imaging systems.

In one aspect, noise is reduced in an image by obtaining an
A-scan from a data imaging set. The A-scan has a signal and
the signal defines an amplitude. The amplitude of an A-scan is
a depth profile of the reflected signal. In OCT systems, an
A-scan is a depth profile produced by the reflected optical
energy as a function of time. To remove noise from an A-scan,
anoise floor specific to the A-scan is estimated and the ampli-
tude of the signal is scaled based on the estimated noise floor.

In one embodiment, the noise floor of an A-scan is esti-
mated by averaging the amplitude of the signal at a plurality
of'pixels within a window of the A-scan image. The A-scan is
then normalized to reduce noise by scaling the amplitude of
the A-scan based on the A-scan’s specific estimated noise
floor. Suitable averaging techniques for estimating the noise
floor include, but are not limited to, computing the median,
mode, arithmetic mean, geometric mean, harmonic mean,
quadratic mean, also known as root mean square, and any
weighted means of the A-scan signal within a window.

In another embodiment, the estimated noise floor is deter-
mined by performing a moving average across an A-scan
signal. The moving average is computed across the A-scan
using a sliding window. The sliding window can vary in pixel
width. For example, the sliding window can be a 10 pixel
sliding window or a 100 pixel sliding window. Suitable aver-
aging techniques for performing the moving average include,
but are not limited to, computing the median, mode, arith-
metic mean, geometric mean, harmonic mean, quadratic
mean, also known as root mean square, and any weighted
means of each data set within the sliding window. The mini-
mum average value of the A-scan signal determined from the
moving average is used as the estimated noise floor for the
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A-scan. The A-scan is then normalized to reduce noise by
scaling the amplitude based on the estimated noise floor.

To create a B-scan or scan-converted image with reduced
noise, an estimated noise floor is individually estimated for
each A-scan of the B-scan and scaled based on its specific
estimated noise floor. For example, in one aspect, a plurality
of'A-scans is obtained from an imaging data set. Each A-scan
of the plurality of A-scans has a signal and the signal defines
an amplitude. In each A-scan, an elevated noise floor specific
to the A-scan is estimated. In certain aspects, the estimated
noise floor is the average amplitude of the A-scan. In another
aspect, the noise floor is estimated by performing a moving
average across the A-scan, and the minimum average ampli-
tude of the A-scan computed from the moving average is the
estimated noise floor. To eliminate the noise within each
A-scan, the amplitude of the signal within each A-scan image
is scaled by its specific estimated noise floor. The scaled
A-scans are then combined to form a B-scan image having
reduced noise. The B-scan image is scan-converted into a
Cartesian coordinate system to create a final tomographic
view of the image with reduced noise.

Other and further aspects and features of the invention will
be evident from the following detailed description and the
accompanying drawings, which are intended to illustrate, not
limit, the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a perspective view of a vessel.

FIG. 2 is a cross sectional view of the vessel shown in FIG.
1.

FIG. 3 is a diagram of components of an optical coherence
tomography (OCT) system.

FIG. 4 is a diagram of the imaging engine shown in FIG. 3.

FIG. 5 is a diagram of a light path in an OCT system of
certain embodiments of the invention.

FIG. 6 is a patient interface module of an OCT system.

FIG. 7 is an illustration of the motion of parts of an imaging
catheter according to certain embodiments of the invention.

FIG. 8 shows an array of A scan lines of a three-dimen-
sional imaging system according to certain embodiments of
the invention.

FIG. 9 shows the positioning of A scans with in a vessel.

FIG. 10illustrates a set of A scans used to compose a B scan
according to certain embodiments of the invention.

FIG. 11 shows the set of A scans shown in FIG. 10 within
a cross section of a vessel.

FIG. 12 shows a sample OCT B-Scan polar image calcu-
lated from 660 A-scans.

FIG. 13 shows a scan-converted OCT image from the
B-scan of FIG. 12.

FIG. 14 depicts a block diagram for reducing noise accord-
ing to methods of the invention.

FIG. 15 shows an original polar image of a vessel with a
streaking artifact.

FIG. 16 shows A-scan 350 of the polar image of FIG. 15.

FIG. 17 depicts the squared amplitude of the signal in
A-scan 350.

FIG. 18 depicts the mean squared amplitude of A-Scan 350
across 100 pixel sliding window.

FIG. 19 shows the calculated root mean square of the
A-scan 350.

FIG. 20 shows the comparison between the original polar
image of the B-scan and the noise floor estimate individually
computed for each A-scan.

FIG. 21 shows the original polar image in comparison to
the scaled polar image having the streaking artifact removed.
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FIG. 22 shows a polar image having periodic noise across
the A-scans.

FIG. 23 shows the scan-converted image of FI1G. 22.

FIG. 24 plots the estimated noise floor estimate for each
A-scan from the polar image of FIG. 22.

FIG. 25 shows the polar image of FIG. 22 scaled by the
estimated noise floors of FIG. 24.

FIG. 26 shows the scan-converted image of FIG. 25.

FIG. 27 is a system diagram according to certain embodi-
ments.

DESCRIPTION

This invention generally relates to reducing noise in tomo-
graphic medical images. Medical tomographic imaging is a
general technology class in which sectional and multidimen-
sional anatomic images are constructed from acquired data.
The data can be collected from a variety of signal acquisition
systems including, but not limited to, magnetic resonance
imaging (MRI), radiography methods including fluoroscopy,
x-ray tomography, computed axial tomography and com-
puted tomography, nuclear medicine techniques such as scin-
tigraphy, positron emission tomography and single photon
emission computed tomography, photo acoustic imaging
ultrasound devices and methods including, but not limited to,
intravascular ultrasound spectroscopy (IVUS), ultrasound
modulated optical tomography, ultrasound transmission
tomography, other tomographic techniques such as electrical
capacitance, magnetic induction, functional MRI, optical
projection and thermo-acoustic imaging, combinations
thereof and combinations with other medical techniques that
produce one-, two- and three-dimensional images. Although
the exemplifications described herein are drawn to the inven-
tion as applied to OCT, at least all of these techniques are
contemplated for use with the systems and methods of the
present invention.

Systems and methods of the invention have application in
intravascular imaging methodologies such as intravascular
ultrasound (IVUS) and optical coherence tomography (OCT)
among others that produce a three-dimensional image of a
lumen. A segment of a lumen 101 is shown in FIG. 1 having
a feature 113 of interest. FIG. 2 shows a cross-section of
lumen 101 through feature 113. In certain embodiments,
intravascular imaging involves positioning an imaging device
near feature 113 and collecting data representing a three-
dimensional image.

OCT is a medical imaging methodology using a specially
designed catheter with a miniaturized near infrared light-
emitting probe attached to the distal end of the catheter. As an
optical signal acquisition and processing method, it captures
micrometer-resolution, three-dimensional images from
within optical scattering media (e.g., biological tissue). Com-
mercially available OCT systems are employed in diverse
applications, including art conservation and diagnostic medi-
cine, notably in ophthalmology where it can be used to obtain
detailed images from within the retina. The detailed images of
the retina allow one to identify several eye diseases and eye
trauma. Recently it has also begun to be used in interventional
cardiology to help diagnose coronary artery disease. OCT
allows the application of interferometric technology to see
from inside, for example, blood vessels, visualizing the
endothelium (inner wall) of blood vessels in living individu-
als.

Other applications of OCT and other signal processing
imaging systems for biomedical imaging include use in: der-
matology in order to image subsurface structural and blood
flow formation; dentistry in order to image the structure of
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teeth and gum line to identify and track de-mineralization and
re-mineralization, tarter, caries, and periodontal disease; gas-
troenterology in order to image the gastrointestinal tract to
detect polyps and inflammation, such as that caused by
Crohn’s disease and ulcerative colitis; cancer diagnostics in
order to discriminate between malignant and normal tissue.

Generally, an OCT system comprises three components
which are 1) an imaging catheter 2) OCT imaging hardware,
3) host application software. When utilized, the components
are capable of obtaining OCT data, processing OCT data, and
transmitting captured data to a host system. OCT systems and
methods are generally described in Castella et al., U.S. Pat.
No. 8,108,030, Milner et al., U.S. Patent Application Publi-
cation No. 2011/0152771, Condit et al., U.S. Patent Applica-
tion Publication No. 2010/0220334, Castella et al., U.S.
Patent Application Publication No. 2009/0043191, Milner et
al., U.S. Patent Application Publication No. 2008/0291463,
and Kemp, N., U.S. Patent Application Publication No. 2008/
0180683, the content of each of which is incorporated by
reference in its entirety. In certain embodiments, systems and
methods of the invention include processing hardware con-
figured to interact with more than one different three dimen-
sional imaging system so that the tissue imaging devices and
methods described here in can be alternatively used with
OCT, IVUS, or other hardware.

Various lumen of biological structures may be imaged with
aforementioned imaging technologies in addition to blood
vessels, including, but not limited, to vasculature of the lym-
phatic and nervous systems, various structures of the gas-
trointestinal tract including lumen of the small intestine, large
intestine, stomach, esophagus, colon, pancreatic duct, bile
duct, hepatic duct, lumen of the reproductive tract including
the vas deferens, vagina, uterus and fallopian tubes, structures
of the urinary tract including urinary collecting ducts, renal
tubules, ureter, and bladder, and structures of the head and
neck and pulmonary system including sinuses, parotid, tra-
chea, bronchi, and lungs.

The arteries of the heart are particularly useful to examine
with imaging devices such as OCT. OCT imaging of the
coronary arteries can determine the amount of plaque built up
at any particular point in the coronary artery. The accumula-
tion of plaque within the artery wall over decades is the setup
for vulnerable plaque which, in turn, leads to heart attack and
stenosis (narrowing) of the artery. OCT is useful in determin-
ing both plaque volume within the wall of the artery and/or the
degree of stenosis of the artery lumen. It can be especially
useful in situations in which angiographic imaging is consid-
ered unreliable, such as for the lumen of ostial lesions or
where angiographic images do not visualize lumen segments
adequately. Example regions include those with multiple
overlapping arterial segments. It is also used to assess the
effects of treatments of stenosis such as with hydraulic angio-
plasty expansion of the artery, with or without stents, and the
results of medical therapy over time. In an exemplary
embodiment, the invention provides a system for capturing a
three dimensional image by OCT.

In OCT, alight source delivers a beam of light to an imag-
ing device to image target tissue. Light sources can include
pulsating light sources or lasers, continuous wave light
sources or lasers, tunable lasers, broadband light source, or
multiple tunable laser. Within the light source is an optical
amplifier and a tunable filter that allows a user to select a
wavelength of light to be amplified. Wavelengths commonly
used in medical applications include near-infrared light, for
example between about 800 nm and about 1700 nm.

Methods of the invention apply to image data obtained
from obtained from any OCT system, including OCT systems
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that operate in either the time domain or frequency (high
definition) domain. Basic differences between time-domain
OCT and frequency-domain OCT is that in time-domain
OCT, the scanning mechanism is a movable minor, which is
scanned as a function of time during the image acquisition.
However, in the frequency-domain OCT, there are no moving
parts and the image is scanned as a function of frequency or
wavelength.

In time-domain OCT systems an interference spectrum is
obtained by moving the scanning mechanism, such as a ref-
erence minor, longitudinally to change the reference path and
match multiple optical paths due to reflections within the
sample. The signal giving the reflectivity is sampled over
time, and light traveling at a specific distance creates inter-
ference in the detector. Moving the scanning mechanism lat-
erally (or rotationally) across the sample produces two-di-
mensional and three-dimensional images.

In frequency domain OCT, a light source capable of emit-
ting a range of optical frequencies excites an interferometer,
the interferometer combines the light returned from a sample
with a reference beam of light from the same source, and the
intensity of the combined light is recorded as a function of
optical frequency to form an interference spectrum. A Fourier
transform of the interference spectrum provides the reflec-
tance distribution along the depth within the sample.

Several methods of frequency domain OCT are described
in the literature. In spectral-domain OCT (SD-OCT), also
sometimes called “Spectral Radar” (Optics letters, Vol. 21,
No. 14 (1996) 1087-1089), a grating or prism or other means
is used to disperse the output of the interferometer into its
optical frequency components. The intensities of these sepa-
rated components are measured using an array of optical
detectors, each detector receiving an optical frequency or a
fractional range of optical frequencies. The set of measure-
ments from these optical detectors forms an interference
spectrum (Smith, L.. M. and C. C. Dobson, Applied Optics 28:
3339-3342), wherein the distance to a scatterer is determined
by the wavelength dependent fringe spacing within the power
spectrum. SD-OCT has enabled the determination of distance
and scattering intensity of multiple scatters lying along the
illumination axis by analyzing a single the exposure of an
array of optical detectors so that no scanning in depth is
necessary. Typically the light source emits a broad range of
optical frequencies simultaneously. Alternatively, in swept-
source OCT, the interference spectrum is recorded by using a
source with adjustable optical frequency, with the optical
frequency of the source swept through a range of optical
frequencies, and recording the interfered light intensity as a
function of time during the sweep. An example of swept-
source OCT is described in U.S. Pat. No. 5,321,501.

Generally, time domain systems and frequency domain
systems can further vary in type based upon the optical layout
of the systems: common beam path systems and differential
beam path systems. A common beam path system sends all
produced light through a single optical fiber to generate a
reference signal and a sample signal whereas a differential
beam path system splits the produced light such that a portion
of the light is directed to the sample and the other portion is
directed to a reference surface. Common beam path systems
are described in U.S. Pat. Nos. 7,999,938, 7,995,210; and
7,787,127 and differential beam path systems are described in
U.S. Pat. Nos. 7,783,337, 6,134,003; and 6,421,164, the con-
tents of each of which are incorporated by reference herein in
its entirety.

In certain embodiments, the invention provides a differen-
tial beam path OCT system with intravascular imaging capa-
bility as illustrated in FIG. 3. For intravascular imaging, a
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light beam is delivered to the vessel lumen via a fiber-optic
based imaging catheter 826. The imaging catheter is con-
nected through hardware to software on a host workstation.
The hardware includes an imagining engine 859 and a hand-
held patient interface module (PIM) 839 that includes user
controls. The proximal end of the imaging catheter is con-
nected to PIM 839, which is connected to an imaging engine
as shown in FIG. 3. As shown in FIG. 4, the imaging engine
859 (e.g., a bedside unit) houses a power supply 849, light
source 827, interferometer 831, and variable delay line 835 as
well as a data acquisition (DAQ) board 855 and optical con-
troller board (OCB) 851. A PIM cable 841 connects the
imagine engine 859 to the PIM 839 and an engine cable 845
connects the imaging engine 859 to the host workstation.

FIG. 5 shows light path in a differential beam path system
according to an exemplary embodiment of the invention.
Light for image capture originates within the light source 827.
This light is split between an OCT interferometer 905 and an
auxiliary, or “clock”, interferometer 911. Light directed to the
OCT interferometer is further split by splitter 917 and recom-
bined by splitter 919 with an asymmetric split ratio. The
majority of the light is guided into the sample path 913 and the
remainder into a reference path 915. The sample path
includes optical fibers running through the PIM 839 and the
imaging catheter 826 and terminating at the distal end of the
imaging catheter where the image is captured.

Typical intravascular OCT involves introducing the imag-
ing catheter into a patient’s target vessel using standard inter-
ventional techniques and tools such as a guide wire, guide
catheter, and angiography system. The imaging catheter may
be integrated with IVUS by an OCT-IVUS system for con-
current imaging, as described in, for example, Castella et al.
U.S. Patent Application Publication No. 2009/0043191 and
Dick et al. U.S. Patent Application Publication No. 2009/
0018393, both incorporated by reference in their entirety
herein.

Rotation of the imaging catheter is driven by spin motor
861 while translation is driven by pullback motor 865, shown
in FIG. 6. This results in a motion for image capture described
by FIG. 7. Blood in the vessel is temporarily flushed with a
clear solution for imaging. When operation is triggered from
the PIM or control console, the imaging core of the catheter
rotates while collecting image data. Using light provided by
the imaging engine, the inner core sends light into the tissue
in an array of A-scan lines as illustrated in FIG. 8 and detects
reflected light.

FIG. 9 shows the positioning of A-scans within a vessel.
Each place where one of A-scans A11,A12, ..., AN intersects
a surface of a feature within vessel 101 (e.g., a vessel wall)
coherent light is reflected and detected. Catheter 826 trans-
lates along axis 117 being pushed or pulled by pullback motor
865.

The reflected, detected light is transmitted along sample
path 913 to be recombined with the light from reference path
915 at splitter 919 (FIG. 5). A variable delay line (VDL) 925
on the reference path uses an adjustable fiber coil to match the
length of reference path 915 to the length of sample path 913.
The reference path length is adjusted by a stepper motor
translating a minor on a translation stage under the control of
firmware or software. The free-space optical beam on the
inside of the VDL 925 experiences more delay as the minor
moves away from the fixed input/output fiber.

The combined light from splitter 919 is split into orthogo-
nal polarization states, resulting in RF-band polarization-
diverse temporal interference fringe signals. The interference
fringe signals are converted to photocurrents using PIN pho-
todiodes 929a, 9295, . . . on the OCB 851 as shown in FIG. 5.
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The interfering, polarization splitting, and detection steps are
done by a polarization diversity module (PDM) on the OCB.
Signal from the OCB is sent to the DAQ 855, shown in FIG.
4.The DAQ includes a digital signal processing (DSP) micro-
processor and a field programmable gate array (FPGA) to
digitize signals and communicate with the host workstation
and the PIM. The FPGA converts raw optical interference
signals into meaningful OCT images. The DAQ also com-
presses data as necessary to reduce image transfer bandwidth

to 1 Gbps (e.g., compressing frames with a glossy compres-
sion JPEG encoder).
Data is collected from A-scans A11, A12, ..., AN and

stored in a tangible, non-transitory memory. Typically, rota-
tional systems consist of an imaging core which rotates and
pulls back (or pushes forward) while recording an image
video loop. This motion results in a three dimensional dataset
of'two dimensional image frames, where each frame provides
a 360° slice of the vessel at different longitudinal locations.

A set of A-scans captured in a helical pattern during one
rotation of catheter 826 around axis 117 collectively define a
B scan. FIG. 10 illustrates a set of A-scans A11,A12, ..., A18
used to forma B scan according to certain embodiments of the
invention. These A-scan lines are shown as would be seen
looking down axis 117 (i.e., longitudinal distance between
then is not shown). While eight A-scan lines are illustrated in
FIG. 10, typical OCT applications can include between 300
and 1,000 A-scan lines to create a B scan (e.g., about 660).
Reflections detected along each A-scan line are associated
with features within the imaged tissue. Reflected light from
each A-scan is combined with corresponding light that was
split and sent through reference path 915 and VDL 925 and
interference between these two light paths as they are recom-
bined indicates features in the tissue.

The data of all the A-scan lines together represent a three-
dimensional image of the tissue. The data of the A-scan lines
generally referred to as a B scan can be used to create an
image of a cross section of the tissue, sometimes referred to as
a tomographic view. For example, FIG. 11 shows the set of
A-scans shown in FIG. 10 within a cross section of a vessel.
The set of A-scans obtained by rotational imaging modality
can be combined to form a B-scan. FIG. 12 is an example of
an OCT polar coordinate B-Scan with 660 A-scans. To create
a final tomographic view of the vessel, the B-scan is scan
converted to a Cartesian coordinate system. FIG. 13 displays
the scan converted image of the B-scan in FIG. 12.

OCT imaging and other signal processing techniques are
often affected by noise that disrupts the A-scan signals. Noise
left unprocessed can easily distort the resulting B-scan and
scan-converted OCT images. Noise can be attributed to
streaking artifacts. Streaking artifacts are inadvertent reflec-
tions in the path of the light source caused by attenuating
objects, such as those due to a stent strut. Other sources of
noise include periodic noise due to changes in polarization,
interference between coherent waves backscattered from
nearby scatters in a sample, and unknown factors. In the case
of spectra-domain OCT, the readout electronics of the array
detector often adds periodic noise to the recorded optical
intensities. In swept-source OCT, electronic clocks and
counters can produce a similar periodic noise.

Systems and methods of the invention include image-pro-
cessing techniques to reduce noise and remove streaking arti-
facts within medical images by scaling the noise within one-
dimensional images, or depth resolved A-scans, of an
imaging data set. By reducing the noise individually at the
A-scan level, noise is effectively reduced in the B-scan and
scan-converted image. Although the following description is
directed towards reducing noise in OCT images, methods and
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systems of invention can be utilized to reduce noise using
one-dimensional images obtained from any medical signal-
processing imaging technique.

Described below are methods of the invention for reducing
noise in an A-scan following the block diagram of FIG. 14. It
should be noted that the following embodiments can be
manually computed to or automatically computed and
executed by a processor of a computing system to reduce
noise. Automatic computation reduces error associated with
manual computation.

FIG. 14 depicts a block diagram for reducing noise accord-
ing to methods of the invention. Step 300 involves obtaining
an A-scan from an imaging data set. Step 302 involves esti-
mating a noise floor specific to the A-scan. Step 306 involves
scaling, or normalizing, the noise within the A-scan based on
the specific estimated noise floor.

The estimated noise floor, an intensity value in dB, is
treated as a gain that is constant across the A-scan. Therefore,
in order to remove the effects of this gain, the noise floor
estimate is subtracted from the original image. This results in
an A-scan with reduced noise.

Methods for obtaining a depth resolved A-scan are well
known in the art and vary depending on the signal processing
imaging technique used. The A-scan is a depth resolved
image of the interference signal. For time-domain OCT sys-
tems, the depth resolved A-scan can be obtained by taking the
square root of the reflectivity of the interference signal versus
depth. In certain aspects, the basic operation to achieve a
depth resolved A-scan from the interference fringe signal is
performing a fast Fourier transform on the imaging data. For
example, typically in Fourier Domain OCT, including spec-
tral domain OCT, the interference signal is sent to an optical
spectrometer and detected as a function of optical frequency.
With a fixed optical delay in the reference arm, light reflected
from different sample depths produces interference patterns
with the different frequency components. A Fourier trans-
form is then used to resolve different depth reflections,
thereby generating a depth profile of the sample (A-scan).

The reflected energy in a depth resolved A-scan appears as
a signal, or a line, across the x-axis within the A-scan. The
signal is represented by a row of pixels along the x-axis of the
A-scan. The y-coordinate of each pixel is the amplitude of the
signal at that pixel and the x-coordinate is the index for pixel
depth.

After an A scan is obtained from an imaging data set, Step
302 requires estimating the noise floor of the A-scan. In
certain aspects, estimating the noise floor involves averaging
the amplitude signal across the A-scan. For example, noise is
determined by averaging the amplitude of the pixels across a
window of size N within the A-scan. N is the number of pixels
across the window. Suitable averaging techniques for estimat-
ing the noise floor include, but are not limited to, computing
the median, mode, arithmetic mean, geometric mean, har-
monic mean, quadratic mean, also known as root mean
square, and any weighted means of the A-scan signal within a
window.

Any window of size N can be used to average noise within
the A-scan. For example, the window can span across all of
the pixels within an A-scan, or can include a window of 10
pixels or a window of 100 pixels. The number of pixels
chosen for the window size determines the range and extent
noise is reduced.

In some embodiments, the calculated average noise within
the window of size N is the estimated noise floor. The A-scan
is then scaled by the A-scan’s specific estimated noise floor,
as in step 306. The calculated average is treated a gain that is
constant across the A-scan and is subtracted from the ampli-
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tude of the original A-scan. In other words, the amplitude at
each pixel is reduced by the calculated average.

In certain aspects, the A-scan image is linearized prior to
averaging. Once the linearized signal is averaged, the calcu-
lated average is converted back to the logarithmic scale. The
converted average is the estimated noise floor.

According to aspects of the invention, estimating the noise
floor for step 304 includes computing a moving average
across an A-scan signal. The moving average involves calcu-
lating averaging pixels within a siding window of size N
across an A-scan. N is the pixel width of the sliding window.
The pixel width N can be any number of pixels, for example
a 10 pixel sliding window, 50 pixel sliding window, or a 100
window sliding window. Suitable averaging techniques for
performing the moving average include, but are not limited to,
computing the median, mode, arithmetic mean, geometric
mean, harmonic mean, quadratic mean, also known as root
mean square, and any weighted means of each pixel data set
within the sliding window.

After performing the moving average across the A-scan,
the resulting averages are used as the basis for the estimated
noise floor. In certain aspects, the minimum average is used as
the scale factor. In other aspects, a mean, median, or mode of
the resulting averages is utilized as the scale factor. Once the
estimated noise floor is obtained, the amplitude of the A-scan
is scaled by the reducing the amplitude by the estimated noise
floor, as in step 306. If the A-scan data was linearized, the
estimated noise floor is converted back to the logarithmic
scale prior to scaling the A-scan amplitude.

In certain aspects, a plurality of A-scans is obtained from
an imaging data set. The steps outlined in FIG. 14 and
described above, are then repeated for each A-scan of the
plurality of A-scans. As a result, noise is specific to each
A-scan of the plurality of A-scan is estimated and each A-scan
is scaled based on its specific estimated noise floor. The
A-scans with reduced noise are combined to create a B-scan
with reduced noise. To create the final tomographic view with
reduced noise, the B-scan is scan-converted to the Cartesian
coordinate system.

In some embodiments, a constant noise floor is added back
into each A-scan of a plurality of A-scans. The constant noise
floor is the same across all A-scans. The constant noise floor
can include, for example, the average amplitude across the
plurality of A-scans.

The following example shows a method of practicing the
invention.

FIG. 15 depicts an original polar image, or B-scan. In FIG.
15, noise the form of a streaking artifact is displayed in the
A-scans near A-scan 150. In order to remove the effects of this
noise and any other noise within the B-scan, an estimated
noise floor for each A-scan is calculated. The following fig-
ures and steps show the estimated noise floor calculation for
A-scan 350 using a moving root mean square average across
A-scan 405 with a sliding window of pixel size 100.

FIG. 16 depicts A-scan 350 of the original polar image of
FIG. 15. The first step is to square the amplitude of each pixel
within the A-scan 350 using equation 1, where Ascan  is the
amplitude of the signal in the A-scan in dB. Although not
exemplified, prior to squaring the amplitude and performing
the moving average, the A-scan can be linearized using Equa-
tion 2.

Ascang, = AscanZg Equation 1
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-continued

Ascangp ) Equation 1

Ascang, =1 —( 1o

FIG. 17 depicts the squared amplitude of the signal in
A-scan 350. Next, the mean square of the amplitude of A-scan
350 is determined using a sliding window of 100 pixel using
equations 3 and 4, where N is size of the sliding window and
MS is the mean squared.

1 Equation 3
F(I:N)= v

MS = Ascangg, « F' Equation 4

FIG. 18 depicts the calculated mean square of the A-scan
350 using the 100 pixel sliding window. After the mean
square is calculated across the A-scan 350, the root mean
square of the amplitude is computed as in equation 5.

RMS=V/MS Equation 5

FIG. 19 shows the calculated root mean square of the
A-scan 350. As shown in FIG. 19, the minimum value of the
root mean square for A-scan 350 equals —80.5 dB. This mini-
mum average value is the estimated noise floor for the A-scan
350.

The above calculations for estimating a noise floor for
A-scan 350 are then repeated for each A-scan in the data set.
FIG. 20 shows the comparison between the original polar
image and the noise floor estimates individually computed for
each A-scan. As shown in the comparison, the estimated noise
floor is highest at the A-scans near A-scan 150 that exhibit a
streaking artifact.

FIG. 21 shows the original polar image in comparison to
the scaled polar image with the streaking artifact removed. In
order to form the scaled polar image, each A-scan is scaled by
its estimated noise floor using equation 6, where the estimated
noise floor of an A-scan is S

ascan*

Ascan =Ascan ;z—S,

ascan

Equation 6

scaled

The scaled polar image shown in FIG. 21 is obtained by
combining each of the individually scaled A-scan.

If the A-scan data was linearized using equation 2 prior to
performing the calculations for equations 1, 3, 4, and 5, the
minimum average value of the linearized root mean square
should be converted to the logarithmic scale to obtain the
estimated noise floor of the A-scan, using equation 7.

N =min(10 log, o(RMS))

ascan

Equation 7

In addition to removing streaking artifacts, methods of the
invention also have the effect of reducing periodic noise, such
as changes in polarization as the imaging catheter rotates.
FIG. 22 depicts a polar image, or B-scan, with periodic noise
across the A-scans of the B-scan. FIG. 23 shows the scan-
converted image of FIG. 22. The highlighted regions show
higher intensity pixels, which is noise. In addition to periodic
noise, FIG. 22 also shows a streaking artifact. Noise was
removed from FIG. 22 by following the steps outlined in FI1G.
14. First, an estimated noise floor was calculated for each
A-scan in the B-scan. FIG. 24 plots the estimated noise floor
specific to each A-scan from the B-scan of FIG. 22. The high
amplitude spike around 170 represents the estimated noise
caused by the streaking artifact and the sinusoidal pattern
across the A-scans is caused by the periodic noise. Second,
the amplitude of each A-scan of the plurality of A-scans is
scaled the using the A-scan’s specific estimated noise floor to
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remove the noise. The scaled A-scans are combined to form a
B-scan. The resulting normalized B-scan without the streak-
ing artifact and having a uniform noise floor is shown in FIG.
25. FIG. 26 shows the scan-converted image of FIG. 25.

In some embodiments, a device of the invention includes
an OCT imaging system and obtains a three-dimensional data
set through the operation of OCT imaging hardware. In some
embodiments, a device of the invention is a computer device
such as a laptop, desktop, or tablet computer, and obtains a
three-dimensional data set by retrieving it from a tangible
storage medium, such as a disk drive on a server using a
network or as an email attachment.

Methods of the invention can be performed using software,
hardware, firmware, hardwiring, or combinations of any of
these. Features implementing functions can also be physi-
cally located at various positions, including being distributed
such that portions of functions are implemented at different
physical locations (e.g., imaging apparatus in one room and
host workstation in another, or in separate buildings, for
example, with wireless or wired connections).

In some embodiments, a user interacts with a visual inter-
face to view images from the imaging system. Input from a
user (e.g., parameters or a selection) are received by a pro-
cessor in an electronic device. The selection can be rendered
into a visible display. An exemplary system including an
electronic device is illustrated in FIG. 27. As shown in FIG.
27, imaging engine 859 communicates with host workstation
433 as well as optionally server 413 over network 409. In
some embodiments, an operator uses computer 449 or termi-
nal 467 to control system 400 or to receive images. An image
may be displayed using an I/O 454, 437, or 471, which may
include a monitor. Any I/O may include a keyboard, mouse or
touchscreen to communicate with any of processor 421, 459,
441, or 475, for example, to cause data to be stored in any
tangible, nontransitory memory 463, 445, 479, or 429. Server
413 generally includes an interface module 425 to effectuate
communication over network 409 or write data to data file
417.

Processors suitable for the execution of computer program
include, by way of example, both general and special purpose
microprocessors, and any one or more processor of any kind
of digital computer. Generally, a processor will receive
instructions and data from a read-only memory or a random
access memory or both. The essential elements of computer
are a processor for executing instructions and one or more
memory devices for storing instructions and data. Generally,
a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more
mass storage devices for storing data, e.g., magnetic, mag-
neto-optical disks, or optical disks. Information carriers suit-
able for embodying computer program instructions and data
include all forms of non-volatile memory, including by way
of example semiconductor memory devices, (e.g., EPROM,
EEPROM, solid state drive (SSD), and flash memory
devices); magnetic disks, (e.g., internal hard disks or remov-
able disks); magneto-optical disks; and optical disks (e.g., CD
and DVD disks). The processor and the memory can be
supplemented by, or incorporated in, special purpose logic
circuitry.

To provide for interaction with a user, the subject matter
described herein can be implemented on a computer having
an I/O device, e.g., a CRT, LCD, LED, or projection device
for displaying information to the user and an input or output
device such as a keyboard and a pointing device, (e.g., a
mouse or a trackball), by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well. For example, feedback
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provided to the user can be any form of sensory feedback,
(e.g., visual feedback, auditory feedback, or tactile feedback),
and input from the user can be received in any form, including
acoustic, speech, or tactile input.

The subject matter described herein can be implemented in
a computing system that includes a back-end component
(e.g., a data server 413), a middleware component (e.g., an
application server), or a front-end component (e.g., a client
computer 449 having a graphical user interface 454 or a web
browser through which a user can interact with an implemen-
tation of the subject matter described herein), or any combi-
nation of such back-end, middleware, and front-end compo-
nents. The components of the system can be interconnected
through network 409 by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include cell network (e.g., 3G or
4G), a local area network (LAN), and a wide area network
(WAN), e.g., the Internet.

The subject matter described herein can be implemented as
one or more computer program products, such as one or more
computer programs tangibly embodied in an information car-
rier (e.g., in a non-transitory computer-readable medium) for
execution by, or to control the operation of, data processing
apparatus (e.g., a programmable processor, a computer, or
multiple computers). A computer program (also known as a
program, software, software application, app, macro, or code)
can be written in any form of programming language, includ-
ing compiled or interpreted languages (e.g., C, C++, Perl),
and it can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. Systems and
methods of the invention can include instructions written in
any suitable programming language known in the art, includ-
ing, without limitation, C, C++, Perl, Java, ActiveX, HTMLS5,
Visual Basic, or JavaScript.

A computer program does not necessarily correspond to a
file. A program can be stored in a portion of file 417 that holds
other programs or data, in a single file dedicated to the pro-
gram in question, or in multiple coordinated files (e.g., files
that store one or more modules, sub-programs, or portions of
code). A computer program can be deployed to be executed
on one computer or on multiple computers at one site or
distributed across multiple sites and interconnected by a com-
munication network.

A file can be a digital file, for example, stored on a hard
drive, SSD, CD, or other tangible, non-transitory medium. A
file can be sent from one device to another over network 409
(e.g., as packets being sent from a server to a client, for
example, through a Network Interface Card, modem, wireless
card, or similar).

Writing a file according to the invention involves trans-
forming a tangible, non-transitory computer-readable
medium, for example, by adding, removing, or rearranging
particles (e.g., with a net charge or dipole moment into pat-
terns of magnetization by read/write heads), the patterns then
representing new collocations of information about objective
physical phenomena desired by, and useful to, the user. In
some embodiments, writing involves a physical transforma-
tion of material in tangible, non-transitory computer readable
media (e.g., with certain optical properties so that optical
read/write devices can then read the new and useful colloca-
tion of information, e.g., burning a CD-ROM). In some
embodiments, writing a file includes transforming a physical
flash memory apparatus such as NAND flash memory device
and storing information by transforming physical elements in
an array of memory cells made from floating-gate transistors.
Methods of writing a file are well-known in the art and, for
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example, can be invoked manually or automatically by a
program or by a save command from software or a write
command from a programming language.

Incorporation by Reference

References and citations to other documents, such as pat-
ents, patent applications, patent publications, journals, books,
papers, web contents, have been made throughout this disclo-
sure. All such documents are hereby incorporated herein by
reference in their entirety for all purposes.

Equivalents

Various modifications of the invention and many further
embodiments thereof, in addition to those shown and
described herein, will become apparent to those skilled in the
art from the full contents of this document, including refer-
ences to the scientific and patent literature cited herein. The
subject matter herein contains important information, exem-
plification and guidance that can be adapted to the practice of
this invention in its various embodiments and equivalents
thereof.

What is claimed is:
1. A nontransitory computer-readable medium storing
software code representing instructions that when executed
by a computing system cause the computing system to per-
form a method of reducing noise in a tomographic image, the
method comprising
obtaining an A-scan from an imaging data set, the A-scan
having a signal and the signal defining an amplitude;

estimating a noise floor specific to the A-scan by perform-
ing a moving average across the A-scan to obtain a
miminum average wherein the mininmum average com-
prises the estimated noise floor;

scaling the amplitude of the signal based on the estimated

noise floor;

combining the scaled A-scans to form a B-scan; and

scan-converting the B-scan into a Cartesian coordinate

system to create a final tomographic view of the image
with reduced noise.

2. The computer-readable medium of claim 1, wherein the
step of scaling comprises reducing the amplitude of the signal
based on the estimated noise floor.

3. The computer-readable medium of claim 1, wherein the
moving average comprises computing the arithmetic mean,
geometric mean, harmonic mean or quadratic mean within a
sliding window across the A-scan.

4. The computer-readable medium of claim 1, wherein the
step of scaling further comprises adding a constant noise floor
to the amplitude of the signal.

5. A nontransitory computer-readable medium storing
software code representing instructions that when executed
by a computing system cause the computing system to per-
form a method of reducing noise in a tomographic image, the
method comprising

obtaining a plurality of A-scans from an imaging data set,

each of the plurality of A-scans having a signal and the
signal defining an amplitude;
estimating a noise floor specific to each of the plurality of
A-scans;

scaling the amplitude of the signal in each of the plurality
of A-scans based on the estimated specific noise floor for
the corresponding A-scan;

combining the scaled A-scans to form a B-scan; and
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scan-converting the B-scan into a Cartesian coordinate
system to create a final tomographic view of the image
with reduced noise.

6. The computer-readable system of claim 5, wherein the
step of estimating comprises

averaging the amplitude ofthe signal at a plurality of pixels

within a window of the A-scan.

7. The computer-readable medium of claim 5, wherein the
step of estimating comprises

performing a moving average across the A-scan.

8. The computer-readable medium of claim 7, wherein the
minimum average obtained from the performed moving aver-
age comprises the estimated noise floor.

9. The computer-readable medium of claim 5, wherein
scaling comprises reducing the amplitude of the signal based
on the estimated specific noise floor.

10. The computer-readable of claim 6, wherein the step of
averaging comprises computing the arithmetic mean, geo-
metric mean, harmonic mean or quadratic mean.

11. The computer-readable of claim 7, wherein the moving
average comprises computing the arithmetic mean, geometric
mean, harmonic mean or quadratic mean within a sliding
window across the A-scan.

12. The computer-readable medium of claim 5, wherein the
step of scaling further comprises adding a constant noise floor
to the amplitude of the signal.
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13. A system for imaging and reducing noise within a
tomographic image, comprising:

a central processing unit (CPU); and

a storage device coupled to the CPU and having stored

there information for configuring the CPU to:

obtain an A-scan from an imaging data set, the A-scan
having a signal and the signal defining an amplitude;

estimate a noise floor specific to the A-scan by comput-
ing an arithmetic mean, geometric mean, harmonic
mean or quadratic mean within a sliding window
across the A-scan;

scale the amplitude of the signal based on the estimated
noise;

combining the scaled A-scans to form a B-scan; and

scan-converting the B-scan into a Cartesian coordinate
system to create a final tomographic view of the image
with reduced noise.

14. The system of claim 13, wherein the minimum average
obtained from the performed moving average comprises the
estimated noise floor.

15. The system of claim 13, wherein scaling comprises
reducing the amplitude of the signal based on the estimated
noise floor.

16. The system of claim 13, wherein scaling further com-
prises adding a constant noise floor to the amplitude of the
signal.



